Processing math: 100%

Tuesday, November 7, 2017

Symmetry of the Riemann-Christoffel Tensor

Symmetry of the Riemann-Christoffel Tensor In this episode, we delve into some of the symmetric and anti-symmetric properties of the Riemann-Christoffel tensor. This work corresponds to problem 245 in Chapter 12 of Introduction to Tensor Analysis and the Calculus of Moving Surfaces. The answer key says something like "we did this on the final exam." So my goal is to fill that hole.

Property #1

The first property is the easiest to show and follows directly from the definition and that is that if we switch α and β (the 3rd and 4th indices) you get the negative value. This is anti-symmetry and it looks like this Rγδβα=Rγδαβ If you look at the definition, it is evident. (αββα)Tγ=RγδαβTδ Switching the indices α and β (βααβ)Tγ=RγδβαTδ(αββα)Tγ=RγδβαTδ(αββα)Tγ=RγδαβTδ Since this is true for an arbitrary tensor, Tγ, we have Rγδβα=Rγδαβ

Property #2

The next symmetric property will require a little more finesse. Now, I don't claim that this is the easiest or most intuitive way to prove this but it does work and it is the one that I came up with. Besides, if you have a better way then it will still be good to see an alternative as that seems to broaden one's understanding. And perhaps you could be so kind as to give me a few clues in the comments.

Here we will show that the Riemann-Christoffel tensor with all indices lowered is symmetric if you swap the first two indices with the second two in order. In other words, γα and δβ. We start by going to the definition. Rγδαβ=Γγ,βδSαΓγ,αδSβ+Γϵ,γβΓϵαδΓϵ,γαΓϵβδ It's clear that the last term Γϵ,γαΓϵβδ is symmetric with {α,β}{γ,δ} because the Christoffel symbols are symmetric in the last two indices. Γϵ,γαΓϵβδ=Γϵ,αγΓϵδβ One down, three to go. The third term requires a few additional steps. Γϵ,γβΓϵαδ=(SωϵΓωγβ)Γϵαδdefinition of lowered index=Γωγβ(SωϵΓϵαδ)commutativity/associativity=ΓϵγβΓϵ,αδlower the index of second term and rename the contracted index ωϵ We see that the result is the same as the initial expression with the required indices swapped. Two down.

The last part of showing this symmetry is a bit more harrowing as we will need to consider the remaining two terms in tandem. We start by rewriting the first two terms of the definition of R in terms of the definitions of the Christoffel symbols of the surface. The definitions are Γγαβ=SαSβSγΓγ,αβ=SαSβSγ

[EDIT: I've amended this proof with a fully intrinsic version of this portion of the proof. If this extrinsic argument gives you the willies, you can go here

Where Sγ is the covariant basis of the surface. Rewriting the first two terms with these definitions and expanding via the product rule Γγ,βδSαΓγ,αδSβ=Sα(SβSδSγ)Sβ(SαSδSγ)=2SβSαSδSγ+SβSδSγSα2SαSβSδSγSαSδSγSβ Exchanging indices γα and δβ in the term boxed in blue yields the same two terms in reverse order. So, enough of that one.

The term boxed in red requires the realization that because of their definition the partial derivatives of the basis vectors have the property that SωSϵ=SϵSω. So, SβSδSγSα=SδSβSαSγ Which is the same as swapping the required indices. Lastly, we examine the remaining two terms. "Factoring" out the derivative with respect to Sδ gives us 2SβSαSδSγ2SαSβSδSγ=Sδ(SβSαSαSβ) By the same argument as the previous step, the difference inside the parentheses is identically zero. Now that all the terms are accounted for, we can state that the Riemann-Christoffel tensor is symmetric in {α,β}{γ,δ}.

Property #3

Now that we have the above symmetries, showing the anti-symmetry of γδ is just 3 swaps away. Rδγβα=RβαδγProperty #2=RβαγδProperty #1=RγδαβProperty #2

Values in the 2 Dimensional Riemann-Christoffel Tensor

The symmetries greatly restrict the degrees of freedom of the values in the tensor. Wikepedia tells me that the degrees of freedom from a "simple calculation" can be found to be N=n2(n21)12 In our case, n=2 so we would expect one independent component. Here are all 16 values where x is the only value we can choose. R1212=xR1221=xR2112=xR2121=xAll other elements are 0

1 comment:

  1. Titanium Art | TiogaArt
    Titanium Art is titanium jewelry piercing an award winning paint titanium nipple jewelry program for new and classic paint in an exciting and diverse portfolio of titanium mesh paint colors. The world titanium guitar chords of the paint. micro touch titanium trimmer

    ReplyDelete